Search results for "Carnot cycle"

showing 10 items of 19 documents

Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems

2020

We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented. peerReviewed

0209 industrial biotechnologyPure mathematicsRank (linear algebra)variaatiolaskenta02 engineering and technology01 natural sciencesdifferentiaaligeometriaoptimal controlsymbols.namesake020901 industrial engineering & automationMathematics (miscellaneous)sub-Finsler geometryPontryagin maximum principleLie algebra0101 mathematicsMathematicsLie groups010102 general mathematicsLie groupBasis (universal algebra)matemaattinen optimointiFoliationsäätöteoriasymbolsCarnot cycleConvex functionSymplectic geometryRegular and Chaotic Dynamics
researchProduct

Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells

2013

Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,…

Chemistrybusiness.industryKineticsOxideGeneral Physics and AstronomyNanotechnologyCathodelaw.inventionsymbols.namesakeChemical energychemistry.chemical_compoundlawElectrodesymbolsOxygen reduction reactionFuel cellsPhysical and Theoretical ChemistryProcess engineeringbusinessCarnot cyclePhysical Chemistry Chemical Physics
researchProduct

Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups

2020

We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.

Class (set theory)Pure mathematicsControl and OptimizationCarnot groups calibrations nonlocal perimeters/ Γ-convergence sets of finite perimeter rectifiabilityMathematics::Analysis of PDEssets of finite perimetervariaatiolaskentaComputer Science::Computational Geometry01 natural sciencesUpper and lower boundsdifferentiaaligeometriasymbols.namesakeMathematics - Analysis of PDEs510 MathematicsMathematics - Metric GeometryComputer Science::Logic in Computer ScienceConvergence (routing)FOS: MathematicsMathematics::Metric Geometry0101 mathematicscalibrationsMathematicsnonlocal perimeters010102 general mathematicsrectifiabilityryhmäteoriaMetric Geometry (math.MG)matemaattinen optimointi010101 applied mathematicsComputational MathematicsΓ-convergenceΓ-convergenceCarnot groupsControl and Systems EngineeringsymbolsCarnot cycleAnalysis of PDEs (math.AP)ESAIM: Control, Optimisation and Calculus of Variations
researchProduct

Nanoscale Heat Engine Beyond the Carnot Limit

2013

We consider a quantum Otto cycle for a time-dependent harmonic oscillator coupled to a squeezed thermal reservoir. We show that the efficiency at maximum power increases with the degree of squeezing, surpassing the standard Carnot limit and approaching unity exponentially for large squeezing parameters. We further propose an experimental scheme to implement such a model system by using a single trapped ion in a linear Paul trap with special geometry. Our analytical investigations are supported by Monte Carlo simulations that demonstrate the feasibility of our proposal. For realistic trap parameters, an increase of the efficiency at maximum power of up to a factor of 4 is reached, largely ex…

Condensed Matter::Quantum GasesPhysicsThermal reservoirMaximum power principleMonte Carlo methodGeneral Physics and AstronomyMechanicssymbols.namesakeQuantum mechanicssymbolsOtto cycleCarnot cycleQuantum thermodynamicsHarmonic oscillatorHeat enginePhysical Review Letters
researchProduct

Convex functions on Carnot Groups

2007

We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.

Convex analysisPure mathematicsCarnot groupsubelliptic equations.49L25Mathematics::Complex VariablesGeneral MathematicsMathematical analysissubelliptic equationsMathematics::Analysis of PDEsHorizontal convexityviscosity convexity35J70Convexitysymbols.namesakeCarnot groupsHomogeneous35J67Convex optimizationsymbolsPoint (geometry)Carnot cycleConvex function22E30Mathematics
researchProduct

Infinitesimal Hilbertianity of Weighted Riemannian Manifolds

2018

AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the…

Mathematics - Differential GeometryMathematics::Functional AnalysisPure mathematicsGeneral MathematicsInfinitesimal010102 general mathematicsRiemannian manifold01 natural sciencesSobolev spacedifferentiaaligeometriasymbols.namesakeDifferential Geometry (math.DG)0103 physical sciencesFOS: MathematicssymbolsMathematics::Metric Geometry53C23 46E35 58B20010307 mathematical physicsFinsler manifoldMathematics::Differential Geometry0101 mathematicsmonistotCarnot cyclefunktionaalianalyysiMathematics
researchProduct

Sets with constant normal in Carnot groups: properties and examples

2019

We analyze subsets of Carnot groups that have intrinsic constant normal, as they appear in the blowup study of sets that have finite sub-Riemannian perimeter. The purpose of this paper is threefold. First, we prove some mild regularity and structural results in arbitrary Carnot groups. Namely, we show that for every constant-normal set in a Carnot group its sub-Riemannian-Lebesgue representative is regularly open, contractible, and its topological boundary coincides with the reduced boundary and with the measure-theoretic boundary. We infer these properties from a cone property. Such a cone will be a semisubgroup with nonempty interior that is canonically associated with the normal directio…

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsBoundary (topology)Group Theory (math.GR)Characterization (mathematics)01 natural sciencesContractible spacesymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematicsGroup (mathematics)010102 general mathematicsCarnot groupMetric Geometry (math.MG)53C17 22E25 28A75 49N60 49Q15 53C38Differential Geometry (math.DG)Cone (topology)symbolsCarnot cycleConstant (mathematics)Mathematics - Group TheoryAnalysis of PDEs (math.AP)Commentarii Mathematici Helvetici
researchProduct

Analytical Expressions for Radiative Losses in Solar Cells

2019

Analytical expressions for the fundamental losses in single junction solar cells are revised and improved. The losses are, as far as possible, described using parameters with clear physical interpretations. One important improvement compared to earlier work is the use of Lambert’s W function, which allows for analytical expressions for the voltage and current at the maximum power point. Other improvements include the use of Stefan Boltzmann’s law to describe the incoming energy flux as well as taking into account the fermionic nature of the electrons when calculating the thermalization loss. A new expression, which combines emission, Boltzmann and Carnot losses, is presented. Finally, an ex…

PhysicsWork (thermodynamics)Stefan–Boltzmann lawMaximum power principleEnergy flux02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesExpression (mathematics)Computational physicssymbols.namesake0103 physical sciencesBoltzmann constantsymbolsRadiative transfer010306 general physics0210 nano-technologyCarnot cycle2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Sharp capacity estimates for annuli in weighted $$\mathbf {R}^n$$ R n and in metric spaces

2016

We obtain estimates for the nonlinear variational capacity of annuli in weighted $$\mathbf {R}^n$$ and in metric spaces. We introduce four different (pointwise) exponent sets, show that they all play fundamental roles for capacity estimates, and also demonstrate that whether an end point of an exponent set is attained or not is important. As a consequence of our estimates we obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion holds in rather general metric spaces, including Carnot groups and many manifolds, but it is just as relevant on weighted $$\mathbf {R}^n$$ . Indeed, to illustrate the sharpness of our estimates, we give several examples of …

PointwiseMathematics(all)Pure mathematicsEnd pointGeneral Mathematics010102 general mathematicsZero (complex analysis)01 natural sciences010101 applied mathematicsSet (abstract data type)Metric spaceNonlinear systemsymbols.namesakesymbolsExponent0101 mathematicsCarnot cycleMathematicsMathematische Zeitschrift
researchProduct

2020

Abstract This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a C ∞ -hypersurface S without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure H 12 . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorf…

Pure mathematicsApplied MathematicsImage (category theory)010102 general mathematicsCarnot groupLipschitz continuity01 natural sciences010101 applied mathematicssymbols.namesakeHypersurfaceHausdorff dimensionsymbolsMathematics::Metric GeometryHausdorff measure0101 mathematicsLebesgue covering dimensionCarnot cycleAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct